Discontinuous Galerkin Methods for Advection-Diffusion-Reaction Problems on Anisotropically Refined Meshes

نویسندگان

  • Emmanuil H. Georgoulis
  • Edward J. C. Hall
  • Paul Houston
چکیده

In this paper we consider the a posteriori and a priori error analysis of discontinuous Galerkin interior penalty methods for second–order partial differential equations with nonnegative characteristic form on anisotropically refined computational meshes. In particular, we discuss the question of error estimation for linear target functionals, such as the outflow flux and the local average of the solution. Based on our a posteriori error bound we design and implement the corresponding adaptive algorithm to ensure reliable and efficient control of the error in the prescribed functional to within a given tolerance. This involves exploiting both local isotropic and anisotropic mesh refinement. The theoretical results are illustrated by a series of numerical experiments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Georgoulis, Emmanuil H. and Hall, Edward and Houston, Paul (2006) Discontinuous Galerkin Methods for Advection-Diffusion-Reaction Problems on Anisotropically Refined Meshes

In this paper we consider the a posteriori and a priori error analysis of discontinuous Galerkin interior penalty methods for second–order partial differential equations with nonnegative characteristic form on anisotropically refined computational meshes. In particular, we discuss the question of error estimation for linear target functionals, such as the outflow flux and the local average of t...

متن کامل

An a-posteriori error estimate for hp-adaptive DG methods for convection-diffusion problems on anisotropically refined meshes

We prove an a-posteriori error estimate for hp-adaptive discontinuous Galerkin methods for the numerical solution of convection-diffusion equations on anisotropically refined rectangular elements. The estimate yields global upper and lower bounds of the errors measured in terms of a natural norm associated with diffusion and a semi-norm associated with convection. The anisotropy of the underlyi...

متن کامل

hp-version discontinuous Galerkin methods for advection-diffusion-reaction problems on polytopic meshes

(2015) hp-version discontinuous Galerkin methods for advection-diffusion-reaction problems on polytopic meshes. Mathematical Modelling and Numerical Analysis. ISSN 0764-583X (In Press) The Nottingham ePrints service makes this work by researchers of the University of Nottingham available open access under the following conditions. · To the extent reasonable and practicable the material made ava...

متن کامل

hp-dGFEM for Second-Order Elliptic Problems in Polyhedra I: Stability and Quasioptimality on Geometric Meshes

We introduce and analyze hp-version discontinuous Galerkin (dG) finite element methods for the numerical approximation of linear second-order elliptic boundary value problems in three dimensional polyhedral domains. In order to resolve possible corner-, edgeand corneredge singularities, we consider hexahedral meshes that are geometrically and anisotropically refined towards the corresponding ne...

متن کامل

hp-dGFEM for Second-Order Elliptic Problems in Polyhedra I: Stability on Geometric Meshes

We introduce and analyze hp-version discontinuous Galerkin (dG) finite element methods for the numerical approximation of linear second-order elliptic boundary value problems in three dimensional polyhedral domains. In order to resolve possible corner-, edgeand corneredge singularities, we consider hexahedral meshes that are geometrically and anisotropically refined towards the corresponding ne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 30  شماره 

صفحات  -

تاریخ انتشار 2007